

In Fig. 1, the end of the distribution curve for $\mu=0$ and for large and small values of μ is sketched. The greatest similarity to the empirical curves is given by the theoretical curve for $\mu=0$.

Fig. 1. The end of the distribution curve for $\mu = 0$ and for large and small values of μ .

Hence, we conclude that the rest mass of the neutrino is either zero, or, in any case, very small in comparison to the mass of the electron. ¹⁰ In the

The beta spectrum endpoint has been under continuous study since 1934

Mainz 2005

KATRIN 2016–(?) Project 8 201?– MARE, ECHO 20??–

The Project 8 concept

Cyclotron radiation

- emitted by mildly relativistic electrons
- Coherent, narrowband
- 10⁻¹⁵ W per electron

$$P_{\text{tot}} = \frac{1}{4\pi\epsilon_0} \frac{2q^2\omega_c^2}{3c} \frac{\beta_\perp^2}{1-\beta^2}$$

- Electron energy contributes to velocity v, power P, frequency ω
 - Can we detect this radiation,
 measure v, P, ω, and determine E
 ± I eV?

$$\omega = \frac{qB}{\gamma mc^2}$$

B field →

 T_2 gas at P < ImT

The Project 8 concept

Cyclotron radiation

- emitted by mildly relativistic electrons
- Coherent, narrowband
- 10⁻¹⁵ W per electron

$$P_{\text{tot}} = \frac{1}{4\pi\epsilon_0} \frac{2q^2\omega_c^2}{3c} \frac{\beta_\perp^2}{1-\beta^2}$$

- Electron energy contributes to velocity v, power P, frequency ω
 - Can we detect this radiation,
 measure v, P, ω, and determine E
 ± I eV?

$$\omega = \frac{qB}{\gamma mc^2}$$

 T_2 gas at P < ImT

The Project 8 concept

Cyclotron radiation

- emitted by mildly relativistic electrons
- Coherent, narrowband
- 10⁻¹⁵ W per electron

$$P_{\text{tot}} = \frac{1}{4\pi\epsilon_0} \frac{2q^2\omega_c^2}{3c} \frac{\beta_\perp^2}{1-\beta^2}$$

- Electron energy contributes to velocity v, power P, frequency ω
 - Can we detect this radiation,
 measure v, P, ω, and determine E
 ± I eV?

$$\omega = \frac{qB}{\gamma mc^2}$$

I fW signal should be detectable over 90-100K background

First runs: thermal noise, no signal

Early runs: lovely thermal noise

The "bins" in a power spectrum are NOT like bins in a histogram, and do NOT show Poisson statistics. They're distributed like Gaussian random numbers squared.

UW prototype updates: More running this year!

Recent sensitivity estimates

Details: B=I Tesla, background = I μ Hz/eV, livetime Iy, angular acceptance I ster, pressure broadening known to I%, field broadening < 10^{-7}

Recent sensitivity estimates

Details: B=I Tesla, background = I μ Hz/eV, livetime Iy, angular acceptance I ster, pressure broadening known to 1%, field broadening < 10^{-7}

Recent sensitivity estimates

Upgrade: single-electron maser?

- A microwave probe has a stable (synchrotron) resonance with a cyclotron electron of the right frequency.
- Follow up each electron detection with a low-resolution, high-SNR "maser tag" for verification.

Single electron can absorb/emit large power from resonant probe beam ...

... but a strong probe beam makes a wide energy window

UC Santa Barbara:

B. LaRoque, B. Monreal

California Institute of Technology:

R. Patterson

Haystack Observatory, MIT:

S. Doelman, A. Rogers

Jefferson Laboratory:

M. Philips

Karlsruhe Institute of Technology:

T.Thuemmler

Massachusetts Institute of Technology:

J. Formaggio, D. Furse, N. Oblath

National Radio Astronomy Observatory:

R. Bradley

Pacific Northwest National Laboratory:

D. Asner, J. Fernandes, M. Jones, B. Van Devender University of Washington:

P. Doe, J. Kofron, E. McBride, H. Robertson, L. Rosenberg, G. Rybka

What's next?

- UW prototype will run again this year
 - First electron detection
 - maybe some physics spectra
 - (no tritium any time soon)
- UCSB cyclotron maser experiments under construction
- Preparing to propose the I-liter, eV-scale experiment
- Read our Snowmass whitepaper!
- Looking at other physics (neutron decay, fundamental constants)